Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to Pseudomonas syringae.

Identifieur interne : 000015 ( Main/Exploration ); précédent : 000014; suivant : 000016

Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to Pseudomonas syringae.

Auteurs : Ning Zhang [États-Unis] ; Marina A. Pombo [Argentine] ; Hernan G. Rosli [Argentine] ; Gregory B. Martin [États-Unis]

Source :

RBID : pubmed:32371523

Abstract

Wall-associated kinases (Waks) are important components of plant immunity against various pathogens, including the bacterium Pseudomonas syringae pv. tomato (Pst). However, the molecular mechanisms of their role(s) in plant immunity are largely unknown. In tomato (Solanum lycopersicum), wall-associated kinase 1 (SlWak1), has been implicated in pattern recognition receptor (PRR)-triggered immunity (PTI) because its transcript abundance increases significantly after treatment with the flagellin-derived, microbe-associated molecular patterns flg22 and flgII-28, which activate the PRRs Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Δwak1) using CRISPR/Cas9 gene editing technology and investigated the role of SlWak1 in tomato-Pst interactions. Late PTI responses activated in the apoplast by flg22 or flgII-28 were compromised in Δwak1 plants, but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants, but retained early PTI responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases upon exposure to flg22 and flgII-28. Induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3, but induction of Fls3 gene expression by flgII-28 was unaffected in Δwak1 plants. After Pst inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/2.2/3 mutant plants, although ultimately, both plants were similarly susceptible. SlWak1 coimmunoprecipitated with both Fls2 and Fls3, independently of flg22/flgII-28 or of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and is important at later stages of PTI in the apoplast.

DOI: 10.1104/pp.20.00144
PubMed: 32371523
PubMed Central: PMC7401122


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to
<i>Pseudomonas syringae</i>
.</title>
<author>
<name sortKey="Zhang, Ning" sort="Zhang, Ning" uniqKey="Zhang N" first="Ning" last="Zhang">Ning Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Boyce Thompson Intitute for Plant Research, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pombo, Marina A" sort="Pombo, Marina A" uniqKey="Pombo M" first="Marina A" last="Pombo">Marina A. Pombo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosli, Hernan G" sort="Rosli, Hernan G" uniqKey="Rosli H" first="Hernan G" last="Rosli">Hernan G. Rosli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853 gbm7@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Boyce Thompson Intitute for Plant Research, Ithaca</wicri:regionArea>
<wicri:noRegion>Ithaca</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32371523</idno>
<idno type="pmid">32371523</idno>
<idno type="doi">10.1104/pp.20.00144</idno>
<idno type="pmc">PMC7401122</idno>
<idno type="wicri:Area/Main/Corpus">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000141</idno>
<idno type="wicri:Area/Main/Curation">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000141</idno>
<idno type="wicri:Area/Main/Exploration">000141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to
<i>Pseudomonas syringae</i>
.</title>
<author>
<name sortKey="Zhang, Ning" sort="Zhang, Ning" uniqKey="Zhang N" first="Ning" last="Zhang">Ning Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Boyce Thompson Intitute for Plant Research, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pombo, Marina A" sort="Pombo, Marina A" uniqKey="Pombo M" first="Marina A" last="Pombo">Marina A. Pombo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosli, Hernan G" sort="Rosli, Hernan G" uniqKey="Rosli H" first="Hernan G" last="Rosli">Hernan G. Rosli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853 gbm7@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Boyce Thompson Intitute for Plant Research, Ithaca</wicri:regionArea>
<wicri:noRegion>Ithaca</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wall-associated kinases (Waks) are important components of plant immunity against various pathogens, including the bacterium
<i>Pseudomonas syringae</i>
pv. tomato (
<i>Pst</i>
). However, the molecular mechanisms of their role(s) in plant immunity are largely unknown. In tomato (
<i>Solanum lycopersicum</i>
), wall-associated kinase 1 (SlWak1), has been implicated in pattern recognition receptor (PRR)-triggered immunity (PTI) because its transcript abundance increases significantly after treatment with the flagellin-derived, microbe-associated molecular patterns flg22 and flgII-28, which activate the PRRs Fls2 and Fls3, respectively. We generated two
<i>SlWak1</i>
tomato mutants (Δwak1) using CRISPR/Cas9 gene editing technology and investigated the role of
<i>SlWak1</i>
in tomato-
<i>Pst</i>
interactions. Late PTI responses activated in the apoplast by flg22 or flgII-28 were compromised in Δwak1 plants, but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants, but retained early PTI responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases upon exposure to flg22 and flgII-28. Induction of
<i>Wak1</i>
gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3, but induction of
<i>Fls3</i>
gene expression by flgII-28 was unaffected in Δwak1 plants. After
<i>Pst</i>
inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/2.2/3 mutant plants, although ultimately, both plants were similarly susceptible. SlWak1 coimmunoprecipitated with both Fls2 and Fls3, independently of flg22/flgII-28 or of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and is important at later stages of PTI in the apoplast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32371523</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>183</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to
<i>Pseudomonas syringae</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1869-1882</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.20.00144</ELocationID>
<Abstract>
<AbstractText>Wall-associated kinases (Waks) are important components of plant immunity against various pathogens, including the bacterium
<i>Pseudomonas syringae</i>
pv. tomato (
<i>Pst</i>
). However, the molecular mechanisms of their role(s) in plant immunity are largely unknown. In tomato (
<i>Solanum lycopersicum</i>
), wall-associated kinase 1 (SlWak1), has been implicated in pattern recognition receptor (PRR)-triggered immunity (PTI) because its transcript abundance increases significantly after treatment with the flagellin-derived, microbe-associated molecular patterns flg22 and flgII-28, which activate the PRRs Fls2 and Fls3, respectively. We generated two
<i>SlWak1</i>
tomato mutants (Δwak1) using CRISPR/Cas9 gene editing technology and investigated the role of
<i>SlWak1</i>
in tomato-
<i>Pst</i>
interactions. Late PTI responses activated in the apoplast by flg22 or flgII-28 were compromised in Δwak1 plants, but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants, but retained early PTI responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases upon exposure to flg22 and flgII-28. Induction of
<i>Wak1</i>
gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3, but induction of
<i>Fls3</i>
gene expression by flgII-28 was unaffected in Δwak1 plants. After
<i>Pst</i>
inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/2.2/3 mutant plants, although ultimately, both plants were similarly susceptible. SlWak1 coimmunoprecipitated with both Fls2 and Fls3, independently of flg22/flgII-28 or of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and is important at later stages of PTI in the apoplast.</AbstractText>
<CopyrightInformation>© 2020 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0003-2775-1755</Identifier>
<AffiliationInfo>
<Affiliation>Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pombo</LastName>
<ForeName>Marina A</ForeName>
<Initials>MA</Initials>
<Identifier Source="ORCID">0000-0003-4057-2700</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosli</LastName>
<ForeName>Hernan G</ForeName>
<Initials>HG</Initials>
<Identifier Source="ORCID">0000-0002-3929-5630</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Gregory B</ForeName>
<Initials>GB</Initials>
<Identifier Source="ORCID">0000-0003-0044-6830</Identifier>
<AffiliationInfo>
<Affiliation>Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853 gbm7@cornell.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Physiol. 2020 Aug;183(4):1420-1421</RefSource>
<PMID Version="1">32747491</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32371523</ArticleId>
<ArticleId IdType="pii">pp.20.00144</ArticleId>
<ArticleId IdType="doi">10.1104/pp.20.00144</ArticleId>
<ArticleId IdType="pmc">PMC7401122</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2016 May 11;19(5):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27173932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jan 20;355(6322):287-289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28104890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Apr;8(4):521-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2020 Feb;43(2):463-478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31713247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:487-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2018 Mar;50(3):368-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29434355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:419-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2014 Jul;35(7):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24946686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Dec 16;42(22):e168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25300484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jan;221(2):976-987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30178602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Jan 8;18(1):74-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 18;107(20):9452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2019 Aug;50:82-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31063902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):974-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jun;40(3):455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10437829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Jul 12;86(1):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8689679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):303-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 15;30(10):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Nov 26;262(5138):1432-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7902614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:23-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2020 Apr 29;71:355-378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32092278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jun;13(6):1317-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 20;7:44905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28317896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13393-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2017 May 22;46:505-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28375731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(2):307-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2020 Feb 04;11:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32117361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CSH Protoc. 2008 Nov 01;2008:pdb.emo105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Feb;69(3):337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19039666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Jan 16;16:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26772971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):614-636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Dec 20;14(12):R139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:101-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Aug;23(8):991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 21;11(1):e0147310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 28;5:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Nov 1;342(6158):624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24114786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Aug 22;2:16128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27548463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Feb;47(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25531751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Feb 17;3:17009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28211849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2020 Jan 13;15(1):e0227713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31929605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:215-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2020 Feb;62:99-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31958770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2016 Oct 26;2(10):e1600822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27819043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1715-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Dec 5;9(12):1667-1670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27717919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):561-571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28341769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 May 8;23(6):1630-1638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29742421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Aug;174(4):2023-2037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28646085</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Zhang, Ning" sort="Zhang, Ning" uniqKey="Zhang N" first="Ning" last="Zhang">Ning Zhang</name>
</region>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
</country>
<country name="Argentine">
<noRegion>
<name sortKey="Pombo, Marina A" sort="Pombo, Marina A" uniqKey="Pombo M" first="Marina A" last="Pombo">Marina A. Pombo</name>
</noRegion>
<name sortKey="Rosli, Hernan G" sort="Rosli, Hernan G" uniqKey="Rosli H" first="Hernan G" last="Rosli">Hernan G. Rosli</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000015 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000015 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32371523
   |texte=   Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to Pseudomonas syringae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32371523" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020